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1．緒言
地球温暖化などの環境問題に対応するため、化石資源
由来の材料やエネルギーの使用を削減しようという動き
が近年急速に高まっている。このような中、植物はその
成長過程で光合成により大気中の二酸化炭素を吸収する
ことから、循環的に再生、使用することで、カーボン
ニュートラル実現に貢献できるバイオマス資源として注
目されている。植物は植物細胞の集合体であり、その細
胞壁は鉄筋コンクリートに類似した構造である。つまり
リグニンとヘミセルロースがコンクリート、そして約
50% を占めるセルロースナノファイバー（CNF）が鉄
筋の役割を担っている。このように CNFは、植物細胞
の骨格成分であり、植物繊維をナノサイズまでほぐすこ
とにより得られる。CNFは軽量であるうえ、セルロー
スの伸び切り鎖結晶構造に由来して高強度、低線熱膨張
率といった特徴を有しており、プラスチックの補強繊維
をはじめ様々な用途開発が行われている。
一方バイオポリエチレン（バイオ PE）はサトウキビ
の糖蜜残渣（廃棄物）から製造される植物由来プラスチッ
クである。その性能は石油由来 PEと同等であるため、
構造材料としては機械的特性や耐熱性は十分でないが、
CNFで補強することにより高性能なオール植物由来材
料となり得る１）。さらに発泡構造を導入することで、軽
量化及び原料の使用量を減らすことができれば、環境負

荷の低減に大きく貢献できる。
そこで本研究では、CNFの複合化がバイオ PEの発
泡射出性と得られた発泡体の機械的特性に及ぼす影響を
明らかにすることを目的とした。材料には、解繊性及び
バイオ PEとの相容性に優れたアセチル化パルプをナノ
分散、複合化することにより得られたアセチル化 CNF
強化バイオ PE（Ac-CNF/ バイオ PE）を用いた。これ
に物理発泡（窒素ガス）による発泡構造を導入し、得ら
れた発泡体の断面気泡構造、独立気泡率、機械的特性等
の基礎データを収集した２）。

2．実験方法
2.1　実験材料
Ac-CNF/ バイオ PEは、既報１）と同様に、京都プロ

セス®に基づいて二段階の溶融混練プロセスを経て作
製したものを使用した。原材料には、アセチル変性パル
プ（アセチル変性度：0.81、アセチル基+リグニン（Ac
成分）19.9wt%、セルロース成分 80.1wt%）及びバイオ
PE（SHA7260、MFR＝ 20g/10min、Braskem S. A.）
を用いた。ここで、アセチル変性度とは、セルロースを
構成するグルコースユニットの 3つのヒドロキシル基に
導入されたアセチル基の個数である。溶融混練の第一段
階では、アセチル変性パルプ、パルプの膨潤剤、マレイ
ン酸変性 PP（MAPP、トーヨータック PMA H1000P、
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2.3　Ac-CNF/ バイオ PEの溶融粘弾性評価
溶融したAc-CNF/ バイオ PEの未発泡成形体に対し

てレオメータ（AR-G2、TA instruments）を用いて、
冷却過程における動的粘弾性測定を行った。治具は
25mmφパラレルプレートを使用し、測定開始温度
160℃、冷却速度 10℃ /min、ひずみ 0.1%、周波数 1Hz
の条件にて実施した。トレイ成形品の底面部から円形に
切り出したものを試験片として使用した。
また、同じく未発泡成形体に対して同装置を用いて溶
融状態での伸長粘度測定を行った。治具は伸長粘度
フィックスチャーを使用し、160℃、ひずみ速度 1s-1 の
条件にて実施した。トレイ成形品の底面部から切り出し
た平板を 160℃に加熱したプレス機を用いて厚さ 0.7mm
のシートに加工し、25mm× 10mmに切り出したもの
を使用した。

東洋紡㈱）、タルク（含タルク配合の場合のみ、MSZ-C、
日本タルク㈱）を二軸押出機（φ15mm、L/D=45、
ULT15TWnano-15MG-NH-700-KYS、㈱テクノベル）に
より混練（設定温度 140℃）し、Ac-CNF30%（Ac 成分
7.45wt%、セルロース成分 30wt%）のマスターバッチ
（MB）を作製した。MAPP はセルロース成分と同量と
なる様に添加した。第二段階では、同じ二軸押出機を使
用してAc-CNF10%（Ac 成分 2.48wt%、セルロース成
分 10wt%）となるように、MBをバイオ PEで希釈混練
（設定温度 170℃）するとともに、真空ポンプを用いて
膨潤剤を留去した。また、得られたペレットを熱プレス
したフィルムに対して、万能顕微鏡（DM4B、Leica 
Microsystems GmbH）を用いた偏光観察を行った。

2.2　Ac-CNF/ バイオ PEの発泡射出成形実験
使用した材料の組成を表 1に示す。溶融混練により得
られたペレットを70℃で6時間以上乾燥後、そのまま（表
1 の④及び⑤：Ac 成分 2.48wt％、セルロース成分
10wt%）、もしくはセルロース成分が 3wt%（表 1の②：
Ac 成分 0.75wt％、セルロース成分 3wt%）、または
5wt%（表 1 の③：Ac 成分 1.24wt％、セルロース成分
5wt%）になるようバイオ PE ペレットと機上混合し、
未発泡成形体及び発泡成形体の射出成形を行った。成形
は低圧発泡射出成形機（J85AD-110H SOFIT 仕様、型
締力 85 トン、㈱日本製鋼所）３）に厚さ 2mmのトレイ
形状の金型（180 × 110mm、底面にダイレクトゲート）
を取り付けて行った（図 1）。発泡はコアバック法によ
り行い、発泡倍率は 2.0、3.0、3.5、4.0、4.5、5.0 倍とした。
成形条件は、シリンダ・ノズル温度 160℃、金型温度
40℃、発泡剤として窒素ガス（圧力 7MPa）を使用した。

表 1　材料組成

図 1　成形品形状
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解繊の進んだ CNFであることがこれまでの検討で明ら
かとなっている１）。
今回使用した材料の冷却過程における複素粘性率η*
の変化を図 3に示す。測定開始時の 160℃でのη* はバ
イオ PEが最も低く、Ac-CNF含有率の増加に伴い上昇
した。また、130 ～ 140℃でのなだらかなη* の上昇は、
相容化剤であるMAPP が、CNF/ バイオ PE間または
CNF/ タルク /バイオ PE間の相互作用を高めているこ
とを示唆している。
伸長粘度の測定結果を図 4に示す。いずれの材料とも
溶融時の延性が乏しく、伸長粘度が定常値に達する前の
ひずみ 2 以内において破断した。特に伸長粘度の高い
Ac-CNF10wt%に関しては、タルクの添加によりさらに
増粘するものの、延性に乏しく破断ひずみは約 0.5 と最
も低かった。

2.4　  Ac-CNF/ バイオ PE発泡体の気泡構造観察、独立
気泡率測定

発泡体の断面気泡構造をマイクロスコープ（VHX-
7000、㈱キーエンス）及び走査型電子顕微鏡（SEM、
SEM5900LV、日本電子㈱）にて観察した。また発泡体
の密度を、湿式密度計（MSE-224S-100-DU +YDK01、
ザルトリウス・ジャパン㈱）、及び乾式密度計（アキュピッ
ク 2 -1340、㈱島津製作所）を用いて測定した。独立気
泡率は湿式密度計により測定した発泡体の密度ρ1、乾
式密度計により測定した発泡体の密度ρ2、及び未発泡
体の密度ρ3から（式 1）により計算した。

（独立気泡率）= ρ1（ρ3－ρ2）ρ2（ρ3－ρ1）
　　

・・・（式 1）

2.5　3 点曲げ試験評価
未発泡（厚さ 2㎜）、2倍発泡（厚さ 4㎜）、3倍発泡（厚
さ 6㎜）、及び 4倍発泡（厚さ 8㎜、③、④のみ）のト
レイ成形品の底面平板部からゲート付近を避けて、長さ
140mm、幅 20mm の試験片を切り出し、3点曲げ試験
を行った。試験速度は 10mm/min、下部支点間距離は
各試験片の厚みの 16 倍とした。

3．結果・考察
3.1　Ac-CNF/バイオPEの偏光顕微鏡観察、溶融粘弾性
④Ac-CNF10%/ バイオ PE及び⑤Ac-CNF10% タル
ク 10%/バイオ PEの偏光顕微鏡観察画像を図 2に示す。
淡色部がセルロース繊維、濃色部が樹脂部を表す。幅
20μm程度のアスペクト比の高い繊維の他、それら繊
維間に偏光観察の分解能では形状を把握できないモヤ状
の構造が特に⑤において広範囲に観察された。これらは

図 3　冷却過程における複素粘性率の温度依存性
（ひずみ 0.1%、周波数 1Hz）
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図 2　偏光顕微鏡によるセルロース繊維の観察
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3.2　Ac-CNF/ バイオ PE発泡体の気泡構造
各材料の 2倍発泡体の独立気泡率と最大発泡倍率を表
2に示す。2倍発泡体に着目したのは、いずれの材料に
おいても安定した発泡成形品を得ることができたためで
ある。2倍発泡体の独立気泡率はAc-CNF含有率の増加
とともに上昇し、④Ac-CNF10%/ バイオ PEで最大の
91.4% となった。また、Ac-CNF10%/ バイオ PEにタル
クを添加した⑤では、77.2% に低下した。最大発泡倍率
は独立気泡率と同様の傾向であり、①バイオ PEの 3.0
倍が④ Ac-CNF10%/ バイオ PE では 5.0 倍となり、⑤
Ac-CNF10%タルク 10%/ バイオ PEでは、4.5 倍に低下
した。図 5の断面画像を見ると、発泡倍率 3.0 倍の①バ
イオ PEでは中央部に粗大気泡ができているが、これは
バイオ PEのη* や伸長粘度が低く、気泡合一が進んだ

図 4　伸長粘度特性（160℃、ひずみ速度 1s-1）
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Ac-CNF3%/ PE
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表 2　2倍発泡体の独立気泡率と最大発泡倍率

図 5　発泡体断面の画像
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3.3　Ac-CNF/ バイオ PE発泡体の機械的特性
各材料の未発泡、2倍発泡、3倍発泡、及び 4倍発泡（③、
④のみ）の成形品から切り出した試験片の 3点曲げ試験
結果を整理し、曲げ弾性率及び曲げ強度と密度の関係を
図 7及び 8に示す。
図 7において、いずれの組成も発泡による密度の低下
とともに曲げ弾性率が減少した。同一発泡倍率での曲げ
弾性率はAc-CNF 含有率の増加に伴って上昇したが、
③Ac-CNF5%/ バイオ PEと④Ac-CNF10%/ バイオ PE
はほぼ同じ値であった。各材料の 2倍発泡体の曲げ弾性
率を比較したところ、①バイオ PE に対して、④
Ac-CNF10%/ バイオ PEは 1.6 倍、⑤Ac-CNF10%タル
ク 10%/ バイオ PE は 2.4 倍にまで増加した。ここで曲
げ弾性率向上による軽量化効果を検証する。⑤
Ac-CNF10% タルク 10%/ バイオ PEの 3 倍発泡体（密
度 0.37g/cm3）は、①バイオ PEの未発泡体（密度 0.95 
g/cm3）の約 4割の密度でありながら同等の弾性率（約
1GPa）を示すことから 6 割以上軽量化できる。また、
図 9に比弾性率（曲げ）と密度の関係を示す。ここで、
比弾性率は弾性率を比重で割った値であり、単位重量当
たりの弾性率の大きさを表す指標となる。比弾性率は 3

ためと考えられる。これ以上の発泡倍率ではさらに大き
な空洞が発生し正常に成形することが出来なかった。こ
れに対して、④Ac-CNF10%/ バイオ PEに関しては発
泡倍率 3.0 倍では粗大気泡は観察されず、5.0 倍でも良
好に成形できることが分かった。これは、Ac-CNF含有
率の増加とともにη* や伸長粘度が増加することによっ
て気泡の成長や合一が抑えられ、独立気泡率が上昇した
ためである。一方、⑤Ac-CNF10%タルク 10%/ バイオ
PEの最大発泡倍率が、④Ac-CNF10%/ バイオ PEより
も低い 4.5 倍であったのは、タルクの添加により伸長粘
度測定における破断ひずみが低下したため、発泡時に気
泡が破れて、独立気泡率が低下したことに起因する。各
材料の 2倍発泡体の断面 SEM画像を図 6に示す。①バ
イオ PEで見られる数百μmの粗大気泡がAc-CNF 含
有率の増加とともに微細化され、④Ac-CNF10%/ バイ
オ PE では数十μmの微細気泡となった。また、⑤
Ac-CNF10% タルク 10%/ バイオ PEでは、伸長変形に
おける破断ひずみの低下により発泡時に破泡が進み、④
よりも気泡径が大きくなった。

図 6　2倍発泡体の断面SEM画像
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れた発泡体の機械的特性について検討を行った。
Ac-CNFを複合化し発泡成形することで、バイオ PEの
持つ植物由来という特徴を損なうことなく最大発泡倍率
の上昇、気泡の微細化が認められた。最大発泡倍率につ
いては、バイオ PE が 3.0 倍 で あるのに対して、
Ac-CNF10%/ バイオ PEは 5.0 倍に向上した。最大発泡
倍率の向上は、軽量化、材料削減を可能にするとともに、
より低倍率発泡の成形安定化にもつながる。また、
Ac-CNFの複合化により発泡体の曲げ弾性率及び曲げ強
度の向上を図ることができた。さらにタルクを添加した
2倍発泡体の曲げ弾性率は、非強化バイオ PE の 2 倍発
泡体の 2.4 倍に達した。用途に応じて配合、成形条件を
設計することで効果的な軽量化や材料削減が期待でき
る。

倍以下の発泡倍率においては、未発泡体より高い値を示
しており、弾性率（剛性）が必要な用途においては発泡
品の方が有利であると言える。
一方、図 8 より、同一発泡倍率での曲げ強度も
Ac-CNF 含有率の増加やタルクの添加により上昇した。
しかしながら図 10 に示した比強度（曲げ）と密度の関
係を見ると、密度の低下に対して比強度が低下している
ことが分かった。比強度は強度を比重で割った値であり、
単位重量当たりの強度の大きさを表す指標となってい
る。これらの結果からは大きな力や大変形が加わるなど、
強度が必要な用途においては低倍率発泡の方が有利であ
ると言える。

4．結言
本研究ではAc-CNF/ バイオ PEの発泡射出性と得ら

図 9　比弾性率（曲げ）の密度依存性
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図 10　比強度（曲げ）の密度依存性
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図 7　曲げ弾性率の密度依存性
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図 8　曲げ強度の密度依存性
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