CNF 複合ポリブチレンサクシネートの性能と生分解挙動に関する研究

産業支援グループ 野口 広貴、伊藤 彰浩、仙波 健 京都大学 小野 和子、矢野 浩之

要 旨

本研究では、生分解性樹脂であるポリブチレンサクシネート(PBS)の性能強化を目的に、樹脂強化フィラーとして 注目されているセルロースナノファイバー(CNF)とPBSの複合樹脂を作製した。2種類のPBSに対してCNFを10 wt% 複合することにより、それぞれの弾性率が3倍以上となり、荷重たわみ温度も18℃以上向上した。

この性能改善は、溶融粘弾性測定や電子顕微鏡観察の結果より、樹脂内部に構築されたCNFのネットワーク構造に 由来するものと考えられる。さらに、CNF 複合 PBS を土壌中に24週にわたり埋設し、その重量変化を調査したところ、 非強化の PBS よりも生分解速度が上昇していることが確認された。

1. 緒言

近年、環境中へ流出したプラスチックによる汚染問題 が深刻化している。特に海洋中に存在するプラスチック は、現状のまま対策を実施しなければ2050年には魚類よ りも多くなるとの調査結果が2016年の世界経済フォー ラムにて報告されている。このような状況において早急 な普及を求められているのが生分解性樹脂である。生分 解性樹脂とは、一定の条件下において、微生物の働きに より水と二酸化炭素にまで分解される樹脂である。意図 せず環境中に流出した場合でも、一定期間後に消滅す るため、環境汚染リスクが非生分解性の樹脂よりも小 さい。ポリブチレンサクシネート (PBS) は代表的な生 分解性樹脂の一つであり、三菱ケミカル(株)が製造販 売している。植物由来のコハク酸を原料としているグ レードや、欧州の生分解性製品の認証機関であるTÜV AUSTRIA社より、海洋生分解性が認められているグ レードもある。しかしながら、PBSは機械的特性や耐熱 性が低いため、非生分解性樹脂から代替可能な用途が限 定的である点に課題がある。

生分解性樹脂と同様に、低環境負荷かつ高性能な点 から普及が期待されている素材の一つがセルロースナ ノファイバー(CNF)である。CNFは植物の細胞壁中に 存在する天然のナノ繊維であり、炭素繊維(比重1.8)よ りも低比重(比重1.5)でありながら、鋼鉄の5倍の引張 強度(3 GPa)や石英ガラス並みの低線熱膨張率(0.17 ppm/K)などの優れた特性を有する。これらの優れた特 性から、CNFは構造用樹脂の補強フィラーとして実用 化が期待されている¹⁻³⁾。CNFと樹脂の複合手法とし て、矢野らはCNFの原料となるパルプを樹脂とともに 二軸押出機に投入、混練することにより、樹脂中でパル プを解繊(CNF化)し、最終的にCNFが分散した樹脂を 得られる「パルプ直接混練法(京都プロセス)」⁴⁾を開 発した。事前に水分散体としてCNFを調製し、乾燥後 に樹脂と複合する一般的な複合手法と比較して、工程数 が少なく、コスト削減が期待できる。

そこで本研究では、PBSの性能を強化することで用途 範囲を拡大するために、京都プロセスを用いてCNF複 合PBSを作製し、その機械的特性や熱的特性の測定を 行った。さらにレオメーターによる溶融粘弾性測定や電 子顕微鏡観察結果に基づいてCNFの複合による性能改 善メカニズムについて検証した。また、土壌中における 生分解性試験を実施し、CNFの複合がPBSの生分解性 に及ぼす影響を調査した。

2. 実験方法

2.1 CNF 複合 PBS の原料

CNF 複合 PBS の作製には、アセチル変性パルプ(セ ルロース78.7 wt%、アセチル基 18.9 wt%、リグニン 2.4 wt%、アセチル変性度 0.9、日本製紙株式会社)及び2種 類の PBS(商品名:FORZEAS、グレード:ZM7B01(産 業コンポスト用)、DM9B01(ホームコンポスト用)、い ずれも海洋生分解性、三菱ケミカル株式会社)を用いた。

2.2 CNF 複合 PBS の作製

CNF 複合 PBS は、京都プロセスに基づき二段階の溶 融混練プロセスを経て作製した。第一段階では、アセチ ル変性パルプと PBS を混合し、二軸押出機(φ15mm、 L/D45、ULT15TWnano-15MG-NH-700-KYS、株式会 社テクノベル) で溶融混練(設定シリンダー温度:投入 口80~ダイス130℃)を2回行うことで、マスターバッチ (MB、セルロース40 wt%)を作製した。

第二段階では、セルロースが最終組成で5 wt%もしく は10 wt%となるようにMBをPBSで希釈混練(投入口 ~ダイス全て160℃)し、CNF複合PBSを得た。これを、 射出成形機(型締力7トン、NPX7、日精樹脂工業株式会 社)により80 mm×10 mm×4 mm の短冊形試験片に 成形した。以降の評価においては、いずれもこの試験片 を使用した。

2.3 繊維の分散状態観察

複合樹脂内部における繊維の分散状態を評価するため、偏光顕微鏡(DM4B、Leica Microsystems GmbH) 及び電界放出形走査電子顕微鏡(FE-SEM、JSM-6700F、日本電子株式会社)を用いた観察を行った。

偏光顕微鏡観察は、MBを製造する1回目の溶融混練 後に採取したサンプル(混練初期サンプル、セルロース 40 wt%)と最終的に得られたCNF複合PBS(セルロー ス10 wt%)に対して行った。混練初期サンプルの観察 では、サンプルを熱プレスして作製したシートを使用 した。また、CNF複合PBSに対する観察では、ガラスナ イフを備えたミクロトーム(HM360CN、Carl Zeiss Co., Ltd.)を用いて、短冊形試験片を50 μm/s の速度で10 μm に切り出して得た薄片を使用した。

FE-SEM観察では、ミクロトームにより切り出した 短冊形試験片の断面を、イオンエッチング処理(10V、2 mA、処理時間15分)し、Pt蒸着(膜厚15 nm)して観察 した。なお、イオンエッチング処理には、イオンスパッ タリング装置(Eiko Engineering Co., Ltd.)を基に製作 した装置を、また、Ptの蒸着にはイオンスパッタリン グ装置(JFV-1500、日本電子株式会社)を用いた。

2.4 溶融粘弾性の測定

各樹脂の溶融粘弾性を、レオメーター(AR-G2、TA instruments, Inc.)を用いて測定し、貯蔵弾性率(G')の ひずみ依存性を評価した(ひずみ0.01%-100%、測定 温度170℃、周波数1 Hz)。ジオメトリには25 mm ϕ の パラレルプレートを使用した。

2.5 機械的特性の測定

万能試験機(AG-X plus、株式会社島津製作所)を 用いて3点曲げ試験(速度 10 mm/min、支点間距離 64 mm)を実施した。

シャルピー衝撃試験機(株式会社安田精機製作所、ハンマー容量2.0 J)を用いて衝撃強度を評価した。なお、 試験片中央に深さ2 mmのノッチを設けた。

2.6 熱的特性の評価

熱的特性の評価として、荷重たわみ温度(HDT)を測 定した。HDT試験装置(HDT.TESTER 6M-2、株式会社 東洋精機製作所)を用い、試験片に1.80 MPaの応力を負 荷した状態で120℃/hの速度で昇温した。試験片のたわ みがフラットワイズ方向で0.34 mmに達する温度をHDT として算出した。

2.7 土壌中における生分解性評価

土壌を模した用土を28℃の暗室内に設置し、十分に乾燥させた試験片を深さ5 cmの位置に埋設した。一定期間毎に重量測定、外観及び電子顕微鏡観察(卓上走査電子顕微鏡、JCM-7000、日本電子株式会社)を行った。電子顕微鏡観察は、ミクロトームで切り出した試験片の断面を、蒸着処理を行わずに低真空観察モードで観察した。

3. 結果と考察

3.1 繊維の分散状態観察

図1 (a)、(b) はZM7B01をマトリックス樹脂とする CNF複合PBSの混練初期サンプル(セルロース40 wt%) 及び最終的に得られたCNF複合PBS(セルロース10 wt%)の偏光顕微鏡観察像である。図1(a)で多数観察 される原料パルプ由来の30 µm程度の太さの繊維は、図 1(b)示す通り、混練後にはほとんど観察されなくなっ た。図1(c)は、CNF複合PBSの短冊形試験片をミク ロトームにより切り出した断面のFE-SEM観察像であ る。イオンエッチング処理により断面表層の樹脂が除 去されたことで、溶融混練によりパルプが太さ約50 nm のCNFまで解繊されていること、そしてCNFがネット ワーク状に樹脂内部に分散していることが確認できた。 DM9B01をマトリックス樹脂とするCNF複合PBSに関 しても同様の観察結果であった。

3.2 溶融粘弾性の評価

繊維の分散状態を巨視的に捉えるために、CNF 複合 PBSと非強化PBS (ZM7B01及びDM9B01) について、レ オメーターを用いてひずみに対する貯蔵弾性率(G') の変化を測定した。図2は、ZM7B01及びそのCNF 複合

京都市産業技術研究所

図1 CNF 複合 PBS (ZM7B01)の顕微鏡観察像
(a) 混練初期サンプル (セルロース40wt%)の偏光顕微鏡観察像、(b) CNF 複合 PBS (セルロース 10 wt%)の偏光顕微鏡観察像、
(c) イオンエッチング処理した CNF 複合 PBS (セルロース 10 wt%)の FE-SEM 観察像

PBSの測定結果である。CNF 複合 PBS と ZM7B01のプ ロットを比較すると、CNF の複合によってG'が大幅に 増加した。また、ZM7B01のG'はひずみに依存しないが、 CNF 複合 PBSの場合では、ひずみ0.1%以上において、G' が急激に低下した。DM9B01をマトリックス樹脂とする CNF 複合 PBSにおいても同様の挙動が観察された。

CNF 複合 PBSの低ひずみ条件下におけるG'の大幅 な増加は、樹脂の変形(流動)を抑制するCNFのネッ トワーク構造が樹脂内部で形成されていることを、ひ ずみ0.1%以上におけるG'の急激な減少は、ネット ワーク構造が高ひずみにより変化したことを示唆して いる⁵⁾。

3.3 CNF 複合 PBS の性能

表1に非強化PBS及びCNF複合PBSの機械的特性及びHDTをまとめる。また、ZM7B01をマトリックス樹脂とする系に関して、図3に曲げ試験で得られた代表

図2 ZM7B01及びCNF 複合 PBS(セルロース 5 wt% 及び10 wt%)のひずみに対する貯蔵弾性率の変化(周波数:1 Hz、温度:170℃)

的な応力—ひずみ曲線を示す。ZM7B01(曲げ弾性率 660 MPa、曲げ強度 33.2 MPa)と比較して、曲げ弾性 率はセルロースを5 wt% 複合した PBSで約1.9倍(1280 MPa)、10 wt% 複合した PBSで約3倍(2010 MPa)と

マトリックス樹脂	セルロース (wt%)	曲げ弾性率 (MPa)	曲げ強度 (MPa)	シャルピー衝撃強度 (kJ/m ²)	HDT (°C)
ZM7B01	0	660	33.2	8.32	70.2
	5	1280	46.9	6.95	81.3
	10	2010	56.8	5.91	88.5
DM9B01	0	270	15.3	51.12	50.4
	5	670	23.4	6.89	67.3
	10	1240	32.2	6.03	71.6

表1 CNF 複合 PBS の基礎物性

図3 ZM7B01及びCNF 複合 PBS (セルロース 5 wt% 及び10 wt%)の曲げ応力-ひずみ曲線

なった。また曲げ強度についても、ZM7B01に対しセル ロースを5 wt% 複合した PBS で約1.4倍(46.9 MPa)、10 wt% 複合した PBS で約1.7倍(56.8 MPa)となった。こ のように、CNFの複合によって曲げ特性が向上した。

より柔らかいホームコンポストグレードのDM9B01 (曲げ弾性率 270 MPa、曲げ強度 15.3 MPa) では、絶 対値は低いものの向上効果はさらに大きく、セルロース を10 wt% 複合すると、曲げ弾性率は4.6倍(1240 MPa)、 曲げ強度は2.1倍(32.2 MPa)となった。

図4にHDT 試験で得られた代表的な荷重たわみ―温度 曲線(負荷応力1.80 MPa)を示す。ZM7B01では、60℃ 付近から急激にたわみ量が増加し始め、HDTは70.2℃ であった。一方CNF複合PBSでは、70℃付近からたわ み量が増加し始め、HDTは88.5℃(+18.3℃)であった。 なお、昇温の初期段階で変位がマイナスとなっているの

は、射出成形時の残留応力の影響で樹脂が反ったためで あると考えられる。

ホームコンポストグレードのDM9B01では、曲げ特性 と同様に向上効果が大きく、非強化のDM9B01が50.4℃ であるのに対し、セルロースを10 wt%添加することで、 71.6℃ (+21.2℃) となった。

以上の性能向上は、FE-SEM 観察及びレオメーターの 測定結果から、CNFがPBS内部でネットワーク構造を形 成し、外力や熱に対する樹脂の変形を抑制する効果を発 揮したためであると考えられる。一方、曲げ試験の結果 とは反対に、衝撃強度はCNFの複合により低下した(表 1)。これはCNFの複合により樹脂の変形が抑制される ことで、衝撃が印加された箇所への応力集中が緩和され にくい状態になったためであると考えられる。

4週埋設後

図5 土壌埋設後の試験片外観

3.4 土壌中における生分解性評価

図5に、土壌埋設から4週または24週経過した各試験 片の外観を示す。ホームコンポストグレードのDM9B01 及びそのCNF複合PBSでは、4週経過時点で表面の劣化 がはっきりと確認できた。さらに24週経過後においては セルロースを10 wt%含むCNF複合PBSでは劣化が顕著 であった。一方、産業コンポストグレードのZM7B01で は24週経過時点でもセルロース添加の有無に関わらず、 変化は少なかった。図6は各サンプルの土壌埋設後の重 量変化を示している。マトリックス樹脂の違いによって 重量変化に大きな差が生じたが、いずれの場合でも、20 週経過以降は、CNFの複合率が高いほど重量減少が大 きいことが確認された。

図7に分解が顕著であった DM9B01及びその CNF 複合 樹脂(セルロース10 wt%)の12週埋設後の試験片の表面 及び断面の SEM 観察像を示す(図7)。いずれの試験片 においても、樹脂表面に糸状菌が貼りついていた。また、 DM9B01の断面では、樹脂の表面付近からのみ分解が進 行しているのに対し、CNF 複合 PBS では、樹脂の内部

図7 DM9B01及びCNF 複合 PBS (セルロース10wt%)の12週埋設後の SEM 観察像

においても分解に由来すると考えられる空隙が多数観察 された。CNFが水分や微生物のパス形成に寄与し、樹 脂内部における分解を促進したことが示唆された。

4. 結論

本研究では、基礎物性並びに生分解性の異なる2種類のPBSを対象として、京都プロセスに基づきCNFを複合し、その性能及び生分解性を評価した。グレードにより補強効果は異なるが、非強化のPBSに対してセルロースを10 wt%複合することにより、弾性率は3倍以上となり、荷重たわみ温度は18℃以上向上した。この性能向上には、PBS内部で形成されたCNFのネットワークが寄与していると考えられる。また、CNFを複合することで、樹脂内部においても分解が促進されることが確認できた。

生分解性樹脂はこれまでも普及活動が行われてきた が、生分解性樹脂のほとんどは柔らかく耐熱性が低いた め、用途範囲が限られ、結果として十分な普及には至っ ていない。本研究を通し、京都プロセスによりPBSに CNFを複合することで、樹脂の機械的特性及び耐熱性 を向上させ、さらに環境中に流出した際の生分解を促進 できることが明らかとなった。京都プロセスはPBS以 外にも適用可能な複合手法であることから、生分解性樹 脂の用途範囲を拡大し、さらなる普及促進に貢献しうる と考えられる。

謝 辞

本研究は、京都大学 生存圏研究所の矢野浩之教授を 中心に取り組んだ独立行政法人環境再生保全機構 環境 研究総合推進費「セルロースナノファイバー補強による バイオマスプラスチック用途拡大の推進」で得られた成 果の一部である。本紙面をお借りし、独立行政法人環境 再生保全機構並びに御支援、御指導をいただいた方々に 心から謝意を表します。

参考文献

- R.J. Moon et al.: Chem. Soc. Rev., 40, 3941–3994 (2011)
- 2) C. Miao et al.: Cellulose, 20, 2221-2262 (2013)
- 3) 矢野博之:森林科学、81, 3-6 (2017)
- 4) H. Yano et al.: Cellulose, 25, 3351-3362 (2018)
- 5) A. Sato et al.: Cellulose, 26, 1–33 (2019)