レーザーアブレーション/ICP発光分析法による鉛フリーはんだ分析

金属系チーム 南 秀明,山梨 眞生,塩見 昌平, 丸岡 智樹,門野純一郎 研究室副室長 菊内 康正

要 旨

固体試料直接分析法 (レーザーアブレーションにより発生した微粒子をICP 発光分析装置に直接導入する分析法) による鉛フリーはんだ分析について検討した。その結果,レーザーアブレーション条件(照射径150μm,走査速 度:50μm/s,レーザー出力:50%[2.3mJ],パルス周期:20Hz,アブレーションパターン:矩形ライン)において, 分析面積:1mm²で主成分である Sn,Cuに加えて,0.01%程度の微量 Pb,Sb,Biも相対標準偏差3%以下の良好 な結果が得られた。

1. 緒 言

電子・電気製品などに使用されているチップや抵抗 などの配線や固定に「鉛はんだ」が広く利用されて いた。しかし、1990年代頃から廃棄された電子部品 の「はんだ」から地下水を汚染する問題が生じ、鉛 (Pb)フリーはんだの開発が進んだ¹⁾。また、2006年 に欧州連合(EU)で制定されたWaste Electrical and Electronic Equipment (WEEE)指令とRestriction of the use of certain Hazardous Substances in electrical and electronic equipment (RoHS)指令により^{2),3)}、鉛 が規制の対象となり、従来の共晶はんだの使用が制限 された。そのため、Sn-Ag-Cu系の鉛フリーはんだが 広く利用されるようになった⁴⁾。

現在は、RoHS指令に対応するため、Pbなどの規 制物質が含まれていないか確認する必要がある。一般 的なPbの確認方法として、誘導結合プラズマ発光分 析法(ICP-AES)などを用いて行われるが⁵⁾、酸分解 などの前処理により水溶液化する必要がある。しか し、使用する酸の組み合わせによっては、酸分解時に 塩化銀やメタスズ酸などの沈殿が生じるため、ろ別処 理が必要である。ろ別による測定成分の損失などの課 題点もあり、全溶解に向けた酸分解法について検討が なされている^{6)~8)}。このように煩雑な前処理を必要と する分析試料に対して、分析の省力化、迅速化の観点 から固体試料の直接分析法が求められており、筆者ら は、スパークアブレーション(SSEA)-ICP/AESやレー ザーアブレーション(LA)-ICP/AESによる固体試料直 接分析法について検討してきた^{9)~13)}。

本研究では、鉛フリーはんだについて、数mm程度

の微小試料の固体試料を直接分析できる可能性を有し ているレーザーアブレーション/ICP発光分析法(LA-ICP/AES)について検討を行った。通常の水溶液試料 と同様に,発生した微粒子が安定的にプラズマ内へ導 入できるアブレーション条件(レーザー出力,スキャ ンスピード)について検討を行った。また,酸分解処 理についても合わせて検討した。その結果について報 告する。

2.実験

2.1 装置構成

装置構成は、サーモフィッシャーサイエンティ フィック製iCAP6500Duoに、CETAC製レーザーア ブレーション(LSX-213,G2)をテフロンコーティン グしたタイゴンチューブで接続した。図1にレーザー アブレーションシステムの概略図を示す。

2.2 試料

試料はMBH製の認証標準物質,鉛フリーはんだ 「74X-HA (G),74X-AM (E)」,鉛フリーはんだ チップ「C74X-HA (F),C74X-E (E)」,ニラコ製Sn 99.999 %を用いた。認証標準物質の成分濃度を表1に 示す。

表1 認証標準物質の認証値

(%)	Cu	Ag	Pb	Sb	Bi	Zn
74X-HA (G)	0.629	2.8	0.077	2.1	0.0639	2.73
74X-AM (E)	2.97	0.562	0.119	1.06	0.175	0.002
C74X-HA (F)	0.612	2.66	0.084	2.06	0.0605	2.69
C74X-E(E)	3.14	0.656	0.0146	0.06	0.017	0.002
	Ni	Fe	As	Cd	Se	AI
74X-HA (G)	0.0133	0.0029	0.0032	0.0018	0.0008	0.002
74X-AM (E)	0.0203	0.016	0.045	0.0072	0.0115	0.008
C74X-HA (F)	0.0108	0.009				
C74X-E(E)	0.0116	0.004				

2.3 分析操作

2.3.1 溶液分析

試料0.1~0.5gを200mLテフロンビーカーに採取し, 蒸留水1mL, HF 1mL, HNO₃5mLを加え, ホッ トプレート上で加熱分解した。分解後, 100mL-PMP 製メスフラスコに入れ, 蒸留水で定容し, 試験液を調 製した。

2.3.2 レーザーアブレーション分析

測定試料をレーザーアブレーションの試料セルに セットし,照射パターン,照射径,スキャンスピー ド,レーザー出力,パルス周期,ヘリウムガス流量を 設定し,アブレーションを開始する。予備アブレー ションの後,生成したエアロゾル(微粒子)のプラズ マへの導入が一定になってから,各元素の発光スペク トル強度を積算し,溶液分析と同様に連続3回測定し た。必要とするアブレーション時間は,測定する波長 数によって異なるため,分析メソッド作成時に確認が 必要である。表2は今回検討した鉛フリーはんだ用の ICP-AES及びレーザーに関する諸条件を示す。

2.4 濃度レシオ検量線法による定量分析

定量分析は,次の関係式からなる濃度レシオ法を利 用して分析値を算出した。

 $(\exists 1) : C[is,Cu]+C[a]+C[b]+C[c]+C[d]+ \dots = 100 \%$

表 2	レーザ	ーアブ	レーショ	ン/ICF	P発光分	Ւ析法の)測定条件
-----	-----	-----	------	-------	------	------	-------

ICP - AES	iCAP6500Duo			
RFパワー	1150W			
プラズマガス流量	12L/min			
ネブライザーガス流量	0.5L/min			
エシェル分光器				
測定元素-測定波長nm {次数}				
Ag-243.779{138}	Ni-236.604{445}			
AI-394.401{85}	Pb-220.353{453}			
As-193.759{474}	Sb-206.833{463}			
Bi-223.061{451}	Se-190.090{472}			
Cd-214.438{457}	Sn-211.393{460}			
Cu-224.700{450}	Zn-202.548{466}			
Fe-238.204{141}				
Laser ablation	CETAC LSX-213			
照射パターン	矩形ライン分析			
レーザー特性	213nm, Nd-YAG			
照射径	150 μ m			
走査速度	50 μ m/s			
レーザー出力	50%, 2.3m J			
パルス周期	20Hz			
ガス流量 (He)	300 mL/min			

ただし, C[is,Cu]: 内標準元素(Cu)の濃度(%),

```
C[a], C[b] … : 元素a, b … の濃度(%)
```

(式1)をC[is,Cu]で割ると

(式2):1+CR[a]+CR[b]+…=100/C[is,Cu]になる。

ただし, CR[a], CR[b] … : 元素a, b … と内標準 元素(Cu)の濃度比

検量線から

 $(\exists 3)$: CR[a,b ···] = C[a,b ···]/C[is,Cu] ⇔

 $IR[a,b \cdots] = I[a,b \cdots]/I[is,Cu]$

の関係が導かれる。

ただし, IR[a], IR[b] …: 元素 a, b … と内標準 元素(Cu)の強度比

I[a], I[b] …: 元素a, b … の強度

I [is,Cu]:内標準元素(Cu)の強度

(式3)の関係を(式2)に代入すると,

(式4):1+IR[a]+IR[b]+… ⇔ 100/C[is,Cu]になる。

- (式4)を変形すると内標準元素(Cu)の濃度は
- (式5):C[is,Cu] ⇔ 100/(1+IR[a]+IR[b]+…)にな る。
- (式3)と(式5)から各元素 a, b…の濃度は,
 - (式 6) : C[a,b ···] = CR[a,b ···] × C[is,Cu] ⇔

 $IR[a,b,c\cdots] \times 100/(1+IR[a]+IR[b]+\cdots)$

となる。

各成分濃度は、各元素a, b, … と内標準元素(Cu) との強度比, IR[a], IR[b] …から算出できる。

3. 結果と考察

3.1 | C P 発光分析における測定波長について

はんだ測定における測定波長については、各元素 のピークプロファイルを確認し決定した。特に、主 成分であるSnを通常の分析に用いられる測定波長 189.9nm, 235.484nm, 242.170nmで測定した場合、 検出できる測定レンジを超えるため、感度の低い波長 線を選択した。今回用いた測定波長については表2に まとめた。

3.2 酸分解-ICP 発光分析法によるチップ試料の分析 について

鉛フリーはんだは、Sn-Ag-Cuから構成されている。 構成成分の内, Snは塩酸には溶解するが, 硝酸には メタスズ酸の沈殿を生じる。一方、Agは塩酸には不 溶で硝酸に溶解する。Pbは塩酸、硫酸には沈殿の可 能性があり、硝酸に溶解する。この様に溶解挙動が相 反するため塩酸,硝酸,硫酸の組み合わせでは処理 できない。そこで、他の酸の組み合わせについて検 討した。Snの溶解剤としてフッ化水素酸が用いられ ている。また、AgF、AgClの溶解度はそれぞれ5.06 mol/1000g, 1×10⁻⁵ mol/1000g であり、AgFの溶解度 がAgClに比べてかなり大きい。これらの情報をもと に硝酸-フッ化水素酸併用による分解法を試みたとこ ろ、沈殿の生成が認められなかった。そこで、はんだ チップ試料に対して, 硝酸-フッ酸併用による酸分解 を行い測定した。その結果を表3に示す。主要成分の Ag, Cu以外に微量成分においても良好な結果が得ら れた。

表3 ICP 発光分析法による鉛フリーはんだの分析結果

	C74X-HA (F)			C74X-E (E)		
元素	認証値	分析値	標準偏差	認証値	分析値	標準偏差
	%	%	%	%	%	%
Cu	0.612	0.602	0.01	3.14	3.22	0.06
Ag	2.66	2.56	0.08	0.656	0.659	0.003
Pb	0.084	0.079	0.001	0.0146	0.0137	0.0003
Sb	2.06	2.08	0.06	0.06	0.06	0.0014
Bi	0.0605	0.058	0.0007	0.017	0.02	0.0006
Zn	2.69	2.55	0.09	0.002	0.003	0.0009
Ni	0.0108	0.01	0.0001	0.0116	0.01	0.0006
Fe	0.009	0.009	0.0003	0.004	0.006	0.0004

標準偏差:3回

3.3 LA条件について

レーザー出力を変化させた時の発光強度への影響に ついて検討した。その結果を図2に示す。横軸はレー ザー出力を示す。縦軸はレーザー出力10%(0.45mJ) 時の発光強度を1と規格化し、レーザー出力(30%, 50%,70%)の各波長の発光強度比を示す。出力30% で大幅に発光強度が増加し、50%,70%と微増してい る。レーザー出力を増加させた方が得られる発光強度 が大きくなる傾向にある。ところが、出力70%では試 料からアブレーションされる量が多く、高い濃度の試 料がプラズマに導入された状態と同じになり、今回選 択した Snの測定波長においても検出できる測定レン ジを超え計測が飽和した。そのため、今回の検討では 出力50%(2.3mJ)に落とした。

スキャンスピードを変化させた時の発光強度への 影響について検討した。その結果を図3に示す。横軸 はスキャンスピードを示す。縦軸はスキャンスピー ド30 μ m/s時の発光強度を1と規格化し、スキャンス ピード(50,75,100 μ m/s)の各波長の発光強度比を 示す。スキャンスピード50 μ m/sで発光強度が増加 し、75 μ m/sで若干発光強度が低下し、100 μ m/sで 横ばいもしくは微増となっている。今回の検討では、 30 μ m/sと50 μ m/sで発光強度への影響が大きく異な る結果が得られた。スキャンスピードが50 μ m/s以上 では、レーザーの照射時間の違いによる微粒子の発生 に差は少ない。一方、30μm/sでは加熱時間が長いた めに、微粒子の粒径が大きくなり、ICP装置のプラズ マへの搬送に差が生じ、検出される強度が低くなった 可能性がある。もしくは、加熱時間が長いために、測 定成分の一部が揮発したためとも考えられる。スキャ ンスピードと微粒子の粒径、その分布、揮発などの加 熱冷却挙動に関しては今後の検討課題としたい。今回 の検討ではスキャンスピード50μm/sとした。

照射径,周波数に関して,装置上設定できる最大感 度が得られる条件(照射径:150 µ m/s, 20Hz)とした。 また,アブレーションパターンは,溶液分析と同様に 3回連続測光(長波長10秒×3回,低波長10秒×3回) を行うのに必要な時間を確保できる矩形ラインとし た。

試料:74X-HA (G) 照射径:150μm,出力:50% (2.3mJ), 周波数:20Hz

3.4 標準試料による本法の有用性の確認

今回検討した鉛フリーはんだ試料用に調整したレー ザーアブレーション条件(照射径150μm, 走査速 度:50μm/s, レーザー出力:50%[2.3mJ], パルス 周期:20Hz, アブレーションパターン:矩形ライン, ライン間隔:10μm)で, 認証標準物質74X-HA(G), 74X-AM(E), 及びニラコ製Sn99.999%を用いて, 2. 4に示す濃度レシオ検量線法による鉛フリーはんだ チップC74X-HA(F), C74X-E(E)の測定を行った。 その結果を表4に示す。 Cu, Pb, Sb, Biは認証値に近い結果が得られ,標準偏差からもバラツキの小さい結果であった。Agはいずれの試料においても認証値に比べて若干高めの値となった。はんだの凝固過程の違いによるAg偏析が知られており^{13)~15)},レーザーアブレーション分析は照射径150μmと小さいため試料偏析の影響も考えられる。試料偏析の影響については今後の検討課題としたい。ZnはC74X-HA(認証値2.69%)では若干低めの分析値であり,標準偏差も他の成分に比べて高い。C74X-E(認証値0.002%)では分析値0.017%と一桁多い結果となった。Niは認証値に比べて低めであった。Feは認証値に比べて高めの値であった。

今回検討した Pb フリーはんだ分析において, Cu, Pb, Sb, Bi はオーダー分析として利用できることが 分かった。

表4 LA-ICP 発光分析法による鉛フリーはんだの分析結果

		C74X-HA (F)			C74X-E (E)		
元素	認証値	分析値	標準偏差	認証値	分析値	標準偏差	
	%	%	%	%	%	%	
Cu	0.612	0.587	0.03	3.14	3.44	0.06	
Ag	2.66	3.14	0.01	0.656	0.996	0.003	
Pb	0.084	0.087	0.0007	0.0146	0.0147	0.0003	
Sb	2.06	2.29	0.07	0.06	0.073	0.0014	
Bi	0.0605	0.0653	0.0004	0.017	0.022	0.0006	
Zn	2.69	2.47	0.12	0.002	0.017	0.0009	
Ni	0.0108	0.005	0.0005	0.0116	0.01	0.0006	
Fe	0.009	0.012	0.0002	0.004	0.013	0.0004	
Sn	-	91.3	0.22	-	95.3	0.1	

4. まとめ

材料分析において,前処理を必要としない固体試料 直接分析法が求められている。そこで,レーザーア ブレーションにより発生した微粒子をICP発光分析装 置に直接導入する分析法について,鉛フリーはんだ 試料に最適なレーザーアブレーション条件の検討を 行った。その結果,レーザーアブレーション条件(照 射径150 µ m,走査速度:50 µ m/s,レーザー出力: 50%[2.3mJ],パルス周期:20Hz,アブレーション パターン:矩形ライン)において,分析面積:1mm² で主成分である Sn, Cuに加えて,0.01%程度の微量 Pb, Sb, Bi, Fe, Niのオーダー分析が可能であった。 Ag, Znなど一部の成分は認証値から若干ずれる傾 向があり,スキャンスピードなどのLA条件の検討を 行う必要がある。今後は,LAの長所である微小面積 (1mm²) を利用し,はんだ付けされた基板や配線部の分布分析(イメージング分析)に展開する予定である。

参考文献

- 野田明日香:東レリサーチセンター The TRC News, No.111 (2010).
- 2) Directive 2002/96/EC (2003).
- 3) Directive 2002/96/EC (2003).
- 4) 鈴木元治,他:NEC技報,57,74 (2004).
- 5) JIS Z3910 (2008): はんだ分析方法
- 6) 野々瀬菜穂子: 産技研 Today, p16 (2014).
- 7)山田圭二,杉本賢一:愛知県産業技術研究所研究 報告,p1 (2007).
- 8) 林 英男, 上本道久, 特許第5140519号
- 9) 南 秀明, 他:京都市産業技術研究所研究報告, No.1, p11 (2011).
- 10) 南 秀明, 他:京都市産業技術研究所研究報告, No.2, p11 (2012).
- 11) 南 秀明, 他:京都市産業技術研究所研究報告, No.3, p77 (2013).
- 12) 南 秀明, 他:京都市産業技術研究所研究報告, No.4, p15 (2014).
- 13) 曽根原浩幸,成田博:長野県工業技術総合センター 精密・電子技術部門研究報告, No.3, p17 (2008).
- 14) 曽根原浩幸,成田博:長野県工業技術総合センター 精密・電子技術部門研究報告, No.6, p24 (2011).
- 15) 野呂純二,他:分析化学,59,107 (2010).