京都市産業技術研究所

銅めっき皮膜に及ぼすポリエチレングリコールの 予備電解時間の影響

加工技術グループ 表面加工チーム 山本 貴代,永山 富男,小谷有理子,中村 俊博

要 旨

ポリエチレングリコール(PEG)は、平滑な銅めっき皮膜を得るための添加剤として、めっき浴に併用添加されてい るが、めっき操業時間が増大すると分解し、めっき皮膜の表面粗さが増大することが指摘されている。そこで本研究で は、PEG について、予め PEG のみを含む硫酸中で所定時間の電気分解処理(以下、予備電解)を行った後、予備電解 された PEG の分子量変化について調べ、それら PEG を銅めっき浴に添加し得られた銅めっき皮膜に及ぼす影響を検討 した。

その結果, PEG は予備電解により徐々に分解(低分子化)が生じ,それらの PEG 添加浴から得られためっき皮膜は, PEG の予備電解時間が長くなるに伴い,表面粗さが大きく無光沢となることが判明した。予備電解した PEG は,銅電 析を抑制しなくなり,またそれら PEG の被めっき物上への吸着量が減少した。予備電解時間の増加による銅めっき皮 膜の粗化は,予備電解した PEG の吸着重量の低下により,電析膜の平滑化に寄与する電析抑制効果が低減したことに 起因すると考えられる。

1. はじめに

銅めっきは、古くから装飾用品の下地めっきとして用 いられており、美観性の観点から、光沢のある製品が望 まれ、銅めっき皮膜に平滑性が求められてきた¹⁾。1997 年には、IBM 社がこれまでの銅めっきを応用して数 μ mの穴埋めを硫酸銅めっきにより行う、微細配線形成 技術(ダマシンプロセス)を発表した²⁾。これにより現 在は、微細配線形成や3次元実装を目的として、銅めっ きによるマイクロオーダーの穴埋めが盛んに行われてお り、大量の情報を高速処理するための信号の高周波化や、 電子機器の小型化に伴う導体回路の細線化に対応するた め、表面粗さが数十 nm 以下に制御された平滑な銅めっ き皮膜が要求されている^{3,4)}。

平滑な皮膜は、ポリマー成分、硫黄系有機化合物、窒 素系有機化合物、及び塩化物イオンの4成分の添加剤を 硫酸銅めっき浴に添加することにより得られる⁵⁾。古く から用いられている添加剤として、ポリマー成分は、ゼ ラチン、膠等、硫黄系有機化合物として、フェノールス ルホン酸、ナフタレンスルホン酸等、窒素系有機化合物 としては、尿素等がある^{6,7)}。ダマシンプロセスの登場 以降、添加剤としてポリマー成分は、生物由来であるゼ ラチンや膠に替わりポリエチレングリコール(以下、 PEG)が、硫黄系有機化合物は3.3'-ジチオビス(1-プ ロパンスルホン酸)2ナトリウム(以下、SPS)が、窒 素系有機化合物はヤーヌスグリーン B(以下, JGB)が 多く利用されている⁸⁻¹⁰⁾。

一般に、めっき操業時間が増大すると、得られるめっ き皮膜の性状が変化することが経験的に知られており、 その原因の1つとして、添加剤として用いられているポ リマーが、めっき過程で陽極における分解を生じること が指摘されている⁸⁾。例えば、従来添加剤として用いら れてきたゼラチンは、めっき中に分解し、その分解挙動 が小浦らによって報告されている¹¹⁾。PEG についても めっき時の分解挙動について、Y.S. Won ら¹²⁾が報告 しており、同時に PEG の分解機構についても推察して いる。

しかし,めっき皮膜の高精度な平滑性の制御が必要に もかかわらず,めっき時に分解された PEG が, 銅めっ きの析出形態に及ぼす影響について検討した例は見当た らない。

そこで本研究では、まず、予め PEG のみを含む硫酸 中で、所定時間の電気分解処理(以下、予備電解と称す) を行い、PEG の分解を促進し、その PEG の分解挙動に ついて調べた。次に、それら予備電解を行った PEG 添 加銅めっき浴から得られた銅めっき皮膜の表面形態につ いて評価した。

さらに、水晶振動子マイクロバランス法(以下、 QCM)や電気化学測定法により、予備電解処理された PEG が銅電析に及ぼす作用,及び被めっき物に対する 予備電解処理された PEG の吸着挙動について検討した ので報告する¹³⁾。

2. 実験方法

2.1 PEG の予備電解処理条件

PEG の予備電解には、硫酸 10g/L、平均分子量 3000 の PEG 500ppm の水溶液 300mL を用いた(いずれも和 光純薬工業製特級)。陽極に白金、陰極は保留粒子径約 $1 \mu m$ の隔膜で覆った白金板を用い、スターラー撹拌を 行いながら、陽極電流密度 $5A/dm^2$ で所定の時間、定電 流 電解 を 行った。予備 電解 電気量 は 0, 70, 170, 250, 340kC/L とした。

2.2 予備電解処理された PEG の質量分析

予備電解処理された PEG の質量分析には, 島津製作 所製 MALDI 質量分析装置 AXIMA Confidence を用い た。サンプル溶液は,予備電解液である 500ppm PEG 及び硫酸 10g/Lを,アセトニトリルと水(1:1) で 1/10に希釈し,カチオン化剤として 0.5mg/mLトリフル オロ酢酸ナトリウム(ナカライテスク製)を添加した混 合溶液を用いた。これらをサンプルプレート上に1μL 滴下し,風乾後,正イオンリフレクトロンモード,イオ ンの加速電圧 20kV で測定した。

2.3 銅めっき浴組成及び電析条件

銅めっき皮膜を得る際は,予備電解処理後のPEGを 用い,表1の浴組成に銅めっき浴を調製した(いずれも 和光純薬工業製特級)。浴温度はウォーターバスを用い て25℃に保持した。

素地には黄銅板(山本鍍金試験器製, 陰極面積4cm²)を, 陽極にはアノードバッグに挿入した含りん銅板(山本鍍

表	1	銅め	つ	き	浴組成
			_	_	

CuSO ₄ •5H ₂ O	200 g/L
H ₂ SO ₄	50 g/L
Cl ⁻ (HClとして添加)	50 ppm
SPS*	40 ppm
JGB**	20 ppm
電解処理されたPEG	200 ppm

* 3,3'-ジチオビス(1-プロパンスルホン酸)2ナトリウム

** ヤーヌスク・リーンB

金試験器製, 陰極面積 10cm²)を用いた。電源には山本 鍍金試験器製直流安定化電源を用い, 電流密度 2A/dm² でスターラー及びエアーによる併用撹拌を行いながら めっきを行った。

電析時間はめっき厚さが 10μm となるよう設定した。 めっき厚さは、エスアイアイ・ナノテクノロジー(現日 立ハイテクサイエンス) 製微小部けい光 X 線膜厚計を 用いて確認した。電析後、得られためっき皮膜を十分に イオン交換水で水洗し、ドライヤーで冷風乾燥し供試料 とした。

2.4 銅めっき皮膜の評価

最大高さ Rz 及び算術平均粗さ Ra は, Zygo 製白色光干 渉式非接触 3 次元表面形状・粗さ測定機 New View7000 を用いて,対物レンズ 50 倍,測定視野 140×105 μm,カッ トオフ値 80 μm の高域フィルタを適用して測定した。

めっき皮膜の鏡面光沢度は、セプロ製微小面積光沢計 卓上型 157/SO を用い、入反射角 60°の光沢度 Gs (60°) を測定した。光沢度 Gs (60°)は、光源入射角 60°時に おけるガラス面 (屈折率 1.567)の反射率 10%を Gs (60°) = 100%として表した。

めっき皮膜の表面形態は、日本電子製電界放射型走査 電子顕微鏡 JSM-6700F(以下, FE-SEM)及びデジタル・ インスツルメンツ(現ブルカーAXS)製走査型プロー ブ顕微鏡 NanoScope IIIを用いてタッピング原子間力顕 微鏡像(以下, AFM)を観察した。

2.5 予備電解処理された PEG の吸着重量及び 分極曲線測定

硫酸銅めっき浴の電流 – 電位曲線を,電気化学測定装置 HZ-3000 を用いて,リニアスイープボルタンメトリーにて,走査速度を 20mV/s,電極回転速度を 1000rpm とし測定した。作用電極には回転白金ディスク (5mm ϕ),参照電極には Ag/AgCl (Sat.KCl),対極には含りん銅を用いた。

予備電解処理された PEG の電極上の吸着重量を,北 斗電工製 AT カット水晶振動子(6MHz,金電極,表面 積 1.33cm²)により測定した。水晶振動子は,北斗電工 製 QCM マスセンサー HQ-304Cに取り付け,そのマス センサーは北斗電工製 HQ-101C 周波数カウンターに接 続した。10g/L 硫酸及び 50ppm 塩化物イオンの混合溶 液に,予備電解を施した PEG, 10g/L 硫酸, 50ppm 塩 化物イオンを添加した。添加後の最終的な PEG の溶液 濃度は 200ppm となるように添加した。添加時の周波数
 に対し,添加 100 秒後の周波数変化値を読み取り,
 Sauerbrey¹⁴⁾の式により吸着重量を算出した。

3. 結果及び考察

3.1 予備電解処理による PEG の分子量変化

予備電解による PEG の分解挙動について調べるため, MALDI 質量分析装置により,予備電解液中の PEG の 質量分析を行った。なお、マトリックスとして, *a*-シ アノ-4-ヒドロキシケイ皮酸,2,5-ジヒドロキシ安息香酸, 2-(4-ヒドロキシフェニルアゾ)安息香酸,ジシラノー ルをそれぞれ用いた結果,マススペクトルに著しいノイ ズが観測されたため、本実験ではマトリックスを使用し なかった。

図1にPEGの分子量分布に及ぼす予備電解の電気量 の影響を示す。予備電解なしのPEGの分子量分布は, 平均分子量 3000のPEGを用いているため, *m/z* 3000 付近のピーク強度が最も高く,正規分布形状のピーク群 が確認された。これらのピーク群の*m/z* 値は, Kawasaki ら¹⁵⁾が報告しているカチオン化剤に含まれるナトリウ ムイオンが付加した PEG の*m/z* 値と同じであることか ら、今回、検出されたピーク群もナトリウムイオンが付 加した PEG が検出されたと考えられる。

70kC/L 及び 170kC/L 予備電解後の PEG では、0kC/L の PEG の分子量分布に比べ、電気量の増加に伴い、m/z 3000 付近 (2000~3500) のピーク強度が徐々に減少す るとともに、m/z 1000 付近 (500~1500) のピーク強度 が増大した。m/z 500~1500 の分子量分布は正規分布形 状ではなく、ブロード形状であることから平均分子量 3000 の PEG は、予備電解により、一度に特定の分子量 へと分解されるのではなく、幅広い分子量分布をもつこ とが示唆された。250kC/L 予備電解後の PEG では、m/z 3000 付近のピーク群は観察されず、m/z 1000 付近のピー ク群がわずかに観察されるのみとなった。340kC/L 予 備電解後の PEG では、m/z 1000 付近のピーク群も観察 されないことから、分子量 500 以下に低分子化している 可能性が示された。

以上の結果から,平均分子量 3000 の PEG は,予備電 解により,一度にある分子量へと分解されるのではなく, その一部が分子量 500~1000 に低分子化し,分解が進行 している過程では幅広い分子量を持つこと,さらに予備 電解の電気量が増すと分子量が 500 以下まで低下するこ とが示された。

図1 PEGの分子量分布に及ぼす予備電解電気量の影響

3.2 銅めっき皮膜の表面形態に及ぼす予備電解 PEG
 添加の影響

PEGは予備電解により徐々に低分子化することが示 されたため、次に、それらが銅めっき皮膜の表面形態に 及ぼす影響について調べた。

予備電解を行った PEG 添加浴から得られた銅めっき 皮膜の表面性状を,粗さ測定機により観察し図2に,表 面性状から算出した表面粗さ Rz, Ra を図3に示す。0

図 2 銅めっき皮膜の表面性状に及ぼす予備電解電気量の影響
 予備電解電気量: a) 0kC/L, b) 70kC/L, c)

170kC/L, d) 250kC/L, e) 340kC/L

~170kC/L予備電解後のPEG 添加浴から得られた銅 めっき皮膜は、ややピットが観察されたが、Rz は約 $1 \mu m$, Ra は約 20nm であり平滑な皮膜であった。 250kC/L予備電解後のPEG 添加浴で得られた皮膜は、 表面性状で観察されたように、Rz は約 $1.5 \mu m$, Ra は 約 50nm とやや増大し、340kC/L予備電解後のPEG 添 加浴で得られた皮膜では、著しく粗さが増大した。

また、図4には光沢度Gs(60°)を示す。通常、Gs(60°) が70%以上の場合にはGs(20°)を、Gs(60°)が10% 以下の場合にはGs(85°)を用いるが¹⁶⁾、予備電解電気 量を変えて得られためっき皮膜の表面粗さは著しく異な るため、光沢度も大きく異なることが予想される。同一 条件で比較を行うことを目的として、入反射角60°の光 沢度Gs(60°)を測定した。0~170kC/L予備電解後の PEG添加浴から得られた銅めっき皮膜の目視による外 観は光沢であり、その時の光沢度Gs(60°)は約900% であった。250kC/L予備電解後のPEG添加浴で得られ た皮膜の外観は半光沢であり、それに対応してGs(60°) は約760%にやや低下していた。340kC/L予備電解後の PEG添加浴で得られた皮膜では無光沢の外観であり、

図3 銅めっき皮膜の表面粗さ Rz, Ra に及ぼす予備電 解電気量の影響

図 4 銅めっき皮膜の光沢度 Gs(60°) に及ぼす予備電解 電気量の影響

Gs(60°)は約10%にまで大きく低下していた。予備電 解電気量増加による皮膜の表面粗さ Rz, Raの増大に対 し,光沢度 Gs(60°)の低下が認められた。

次に、これらのめっき皮膜の粒子形状や粒径を、 SEM 及び AFM により観察した結果を図5に示す。0~ 170kC/L 予備電解後の PEG 添加浴から得られた皮膜は、 AFM により観察された粒径が約 20~30nm の平滑で微 細な粒の上に、SEM 画像において観察された約 70nm の立方体形状の粒子が点在していた。250kC/L 予備電 解後の PEG 添加浴からは、微細で均一な約 50nm の粒 からなる皮膜が得られ、340kC/L 予備電解後では、2µm 程度の凹凸のある皮膜が形成されていた。

以上の結果から、0~170kC/L予備電解後までのPEG 添加浴から得られた銅めっき皮膜は、粒径が約20~ 30nmの微細な粒から形成されており、光沢かつ平滑な 皮膜であった。しかし、予備電解電気量250kC/L以上 では、銅めっき皮膜の粒径及び表面粗さは増大するとと もに、光沢度は低下した。

3.3 電極上の PEG の分極曲線及び吸着重量に及ぼす 予備電解 PEG 添加の影響

予備電解により低分子化され、様々な分子量を含有す る PEG について、銅の電析抑制効果について検討する ため、予備電解行った PEG を添加した銅めっき浴の分 極曲線を測定した。

図6に銅めっき液中で測定した分極曲線に及ぼす予備 電解電気量の影響を示す。銅が析出し始める0mVから -50mVまでの分極曲線の傾きは、0~170kC/L予備電解 後では約-0.2mA/cm²·Vを示したが、*m/z*3000のPEG のピーク群が観察されなくなった250kC/L以上の予備 電解後では、その傾きが約-1.0mA/cm²·V以上へと急激 に大きくなり、銅めっき皮膜の析出抑制効果が低減して いることが認められた。

さらに,硫酸中での金電極に対する PEG の吸着重量 を QCM で測定した。なお,音叉型振動式粘度計を用い て溶液の粘度を測定した結果,PEG の滴下前後で粘度 は変化しなかったことから, Sauerbrey¹⁴⁾の式を適用し, 周波数変化値から金電極上での PEG の吸着重量を求め た。本実験で用いた水晶振動子における 1Hz の周波数 変化は 12.3ng/cm² に相当する。

図7に金電極上のPEGの吸着重量に及ぼす予備電解 電気量の影響を示す。予備電解処理なしのPEG, すな

図 5 銅めっき皮膜の表面形態に及ぼす予備電解電気量の影響 予備電解電気量:a) 0kC/L,b) 70kC/L,c) 170kC/L,d) 250kC/L,e) 340kC/L

図6 銅めっき浴の分極曲線に及ぼす予備電解電気量の 影響

予備電解電気量: a) 0kC/L, b) 70kC/L, c) 170kC/L, d) 250kC/L, e) 340kC/L 走査速度: 20mV/s, 回転数: 1000rpm

図7 金電極上の PEG の吸着重量に及ぼす予備電解電 気量の影響

わち平均分子量 3000 の PEG をそのままを添加した場合 には、約 120ng/cm² の吸着が観察された。Kelly ら¹⁷⁾ の報告では、平均分子量 3350 の PEG300ppm 及び塩化 物イオン 50ppm を硫酸に添加した時の QCM 金電極上 での吸着重量は、約 110ng/cm² でありおおよそ一致し ている。70kC/L 予備電解後には 50ng/cm² に、予備電 解電気量 170kC/L 以上では本実験系において S/N 比が 悪く検出が困難である約 20ng/cm² にまで、PEG の吸着 重量は低下した。

以上の結果から、PEG に対し 70kC/L、170kC/L と予 備電解を施すと、その電気量が増加するに伴って、平均 分子量 3000 の PEG は徐々に低分子化し、それに伴い吸 着量も低下した。170kC/L 予備電解後では、検出が困 難であるほど小さな PEG の吸着量であったが、マスス ペクトルより m/z 3000 付近のピーク群はわずかに認め られ、分極曲線から銅電析の抑制効果が確認されるとと もに、得られた皮膜も平滑であった。さらに、250kC/L 以上では、m/z 3000 付近の PEG のピーク群は認められ ず、1000 以下に低分子化していた。この時、分極曲線 の傾きが増大し,銅の析出抑制効果が低下するとともに, 得られた皮膜は粗化することがわかった。

170kC/L予備電解処理を施したPEGは、金電極上への吸着がほとんど検出されなかったにもかかわらず、分極曲線測定により銅電析を抑制していることが認められた。今回、QCM測定の際にはJGBを同時に添加し辺定を行った。近藤ら¹⁸⁾により、JGBを併用添加し撹拌することで、PEGは銅電析をより抑制することが報告されている。また、QCM電極の感度や電極の素材の違い等によっても、PEGの吸着量とその銅電析抑制効果に影響を与える可能性があるが、これらについては、今後詳細な検討が必要である。

4. まとめ

めっき時に生じる PEG の分解が銅電析に及ぼす影響 について調べるため、予め PEG を予備電解処理するこ とにより、PEG の分解を促進させた。それら PEG につ いて、その分解挙動、得られた銅めっき皮膜の表面形態、 溶液中での被めっき物に対する吸着挙動及び銅析出の抑 制効果を評価した結果、以下のことが判明した。

- 平均分子量 3000の PEG に予備電解電気量 70, 170kC/Lの予備電解を施すと、その一部が分子量 500~1500 に低分子化し、幅広い分子量分布をもつ。 さらに予備電解電気量を増加させると、m/z 3000 付近のピーク群は観察されなくなり、340kC/L予 備電解後は分子量が 500 以下まで低分子化した。
- 2. 0~170kC/L予備電解後までのPEG添加浴から得られた銅めっき皮膜は、粒径が約20~30nmの微細な粒から形成されており、光沢かつ平滑な皮膜であった。しかし、予備電解電気量を250kC/L、340kC/Lと増加させると、得られた銅めっき皮膜の粒径は増大するとともに、粗い皮膜となって、光沢度は低下した。
- 3. 0~170kC/Lと予備電解電気量を増加させるとPEG の吸着重量は低下するが、分極曲線から銅電析の抑 制効果は確認された。予備電解電気量 250kC/L 以 上では、170kC/L 予備電解時と吸着重量に変化が 見られないほど、吸着重量が減少しており、分極曲 線の傾きも増大した。
- 子備電解された PEG の m/z 3000 付近のピーク群 がわずかにでも認められると、その PEG の吸着重

量はほぼ検出されないほど小さくなるが、銅の電析 抑制効果によって光沢な皮膜が得られた。PEG分 子量が3000以下に低下すると、抑制効果が減少し、 無光沢の皮膜が得られたことが判明した。

以上のことから、電解による PEG の分解挙動及び銅 電析に及ぼす影響を把握することにより、今後、高精度 に平滑性が制御された電子デバイス製品、及び MEMS 等に要求される微細構造体の作製などにつながることが 期待される。

謝辞

本研究における MALDI/TOFMASS を用いた測定に 際して,京都市産業技術研究所 泊 直宏氏,並びに京都 バイオ計測センターの皆様のご協力を得ました。感謝申 し上げます。また,光沢度計を用いた測定に際して,京 都市産業技術研究所 稲田 博文氏のご協力を得ました。 感謝申し上げます。

本研究で使用した走査型プローブ顕微鏡,電界放射型 走査電子顕微鏡,及び微小部けい光X線膜厚計は,そ れぞれ平成12年度,平成15年度,平成20年度にJKA 補助金を受けて設置したもので付記して謝意を表しま す。

参考文献

- 1) 電気鍍金研究会 編: "現代めっき教本", p.187, 日刊 工業新聞 (2011).
- 2) M. Schlesinger, M. Paunovic 編: "Modern Electroplating", p.33, Wiley (2010).
- 3) 三宅淳司:エレクトロニクス実装学会,6,528(2003).
- 4) 小川信之 他:日立化成テクニカルレポート No.46, 15 (2006).
- 5) 電気鍍金研究会 編: "現代めっき教本", p.195, 日刊 工業新聞 (2011).
- 日本めっき技術研究会編: "現場技術者のための実 用めっき(I)", p.83, 槇書店(1981).
- 7)伊勢秀夫: "電鋳技術と応用", p.48, 槇書店 (1996).
- 8) 縄舟秀美:表面技術, 52,34 (2001).
- 9) 高木清:表面技術, 59,570 (2008).
- 10) M. Schlesinger, M. Paunovic 編: "Modern Electroplating", p.371, Wiley (2010).
- 11) 小浦延幸他:表面技術, 44,626 (1993).

- 12) Y. S. Won et al.: J. Appl. Polym. Sci., 117, 2087 (2009).
- 13) 山本貴代 他:表面技術協会第128回講演大会要旨集,
 p. 27 (2013).
- 14) 瀬尾眞浩:Zairyo-to-Kankyo, 48, 610 (1999).
- 15) H. Kawasaki et al.:Anal. Chem., 79, 4182 (2007).
- 16) JIS Z 8741 (1997).
- J.J. Kelly, A.C. West:J. Electrochem. Soc., 145, 3472 (1998).
- 18) 近藤和夫 他:エレクトロニクス実装学会誌, **3**, 607 (2000).